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Transport properties in disordered ratchet potentials
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The role of disorder in one-dimensional ratchet potentials is investigated by introducing the follgwing:
impurities where a certain fraction of the asymmetric unit cells are replaced by unit cells with opposite
asymmetry, andii) randomnesswhere all unit cells have the same asymmetry, but random size. The relevant
color-induced currents are determined and compared with the current of the ideal periodic ratchet potential.
Altogether disorder is shown to quench the effectiveness of thermal ratchets, while remarkable transport
properties become detectab|81063-651X97)09708-0

PACS numbdis): 05.40:+j

Thermal ratchets are remarkable devices capable of recti- VI AL (X—Xi), O=<x—x;<ly;
fying a zero-mean noisy signpl—9]. The simplest example VX)=1{. m 3)
of a thermal ratchet is described by the stochastic process i+1 7 A2(X= i), —lgj=X—X41=<0

] for the ith ratchet tooth(see the inset of Fig.)1 The two
x==V'(x)+&(1), (1) adjacent potential minim&™=V(x;) and V" ;=V(X;1)
are separated by a distankg.; —x;=I,;+1,; and a poten-

where £(t) denotes a Gaussian, zero-mean, stationary noisgal maximum Vi""=Vim+A1I 1i= Vi1 +Aul,;. The overall
andV(x) is a periodic potential with unit-cell length, that  potential functionV(x) is fully determined when the se-
is, V(x+L)=V(x). A stationary nonzero average probability quence of the minim&[" or, equivalently, the sequence of
current j ()= (1/L) f5j (x; )dx may result from the com- the lengths; andl,; for a given choice o¥/J — is assigned.
bined action of the spatial asymmetryof the drift  The idealperiodicratchet potentigl4—6] corresponds to set-
V(x)#V(—x) and the noisdinite correlationwith time 7. ting VI"=0 fori=0,=1,%2,..., sothatl,;=1, andl,;=I,
The procgss(;) represents a nonequilibrium dynamics, sowith |,+1,=L andVM=VM with VM=A 1, =A,l,.
that no violation of the second law of thermodynamics is  The directionality of the ratchets in Fig. 1 is determined
implied [10]. Ratchets have been proposed to regtifyiodic  py the choice oA, andA,; hereA; andA, are independent

signals too(rocked ratchetf11]). o of the tooth index andA,>A,. Thus we define the dimen-
The purpose of the present paper is to investigate the ro'ﬁonlessrectifying factor

of disorderin the transport properties of a thermal ratchet.
Two instances of disorder are discussed in some détail: pi(r,D)—p_(7,D)

impurities for which a certain fraction of the asymmetric y(T’D):2M+(T,D)+M,(T,D)' 4

unit cells (or teeth of the potentialV(x) are replaced at

random by unit cells with opposite asymmethig. 1), and -

(i) randomnessfor which the potential teeth all have the

same asymmetry, but their size is randomly distributed. A ANPATAT AR

variety of disordered ratchets may be construed by combin- [

ing disorder of typesi) and(ii). We conclude that disorder

quenches the rectifying power of both thermal and rocked AVA - AN AN AN

ratchets; most notably, a number of ratchet-related transport |-

properties become detectable in the presence of disorder. Our

results allow us to extend the notion of thermal ratchet to the : VANV Y *

model of transport in polymergl2] and biological macro- d

moleculeq 3,9], on random surface@nterface$ [13], in ar-

rays of Josephson junctiorjd4], of vortex lines in two- NN - NN - - *

dimensional superconductof5], and of point defects and

dislocations in polycrystalline med[d6], to quote but a few FIG. 1. Ratchet potential¥(x): (a) periodic, made oft cells

examples. (i.e., Ay>A,); (b) and(c) with impurities represented by cells.
Let us specialize the ratchet modd) by choosing the Impurities in(b) _and(c) are topologically different. The potential in

autocorrelation function (c) can be obtained from the one {h) through the discrete trans-

formationV(x) - —V(—x). A +,— interface divides a+ cell se-
guence on the right-hand side from-acell sequence on the left-

_ 2 _
<§(t)§(0)>_0 exp( |t|/T)’ 2 hand side(vice versa for a—,+ interface. (d) Periodic pattern of
+ cells. The extended unit cell is made here of twaand two—
with a?=D/ 7 for the noise sourcé(t) and the shape cells. Inset: the ratchet tooth of E(R).
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where u.. are the escape rates for any transitign>X;.4,  the interface itself. This is required to compensate for the
respectively. For the piecewise linear potentials of B),  difference u (7,D)—wn_(7,D) and guarantee thgt(x;r)
the factory(7,D) is independent of the size of the ratchet vanishes at the interface. Stability of the accumulation point

teeth; the relevant escape rajes(7,D) have been calcu- +,— is thus achieved when the accumulation length
lated in the strong color limit of Ref[17], whence \,=L/y(7,D) is much shorter than the distantéetween
pn+(0D)=puo(D) and forA,— A <o the +,— interface and the closer,+ interface, i.e., for
>N, (IN)exd —(—N)/A] [19].
T A%—A’i‘ (ii) Disorder from randomnesdNe assume now that the
v7.D)=5 A A, (5) potential V(x) is made of individual ratchet teett8) with

constant, positive asymmetA,> A, but irregular size. This
Notice that in the weak color limit of Ref§4—6], the recti- means that the potential minim#" and maximaVi"’I are
fying factor y(7,D) would be proportional ta®. The linear  distributed at random and so are the distarigggbetween
T dependence in Ed5), an artifact of the discontinuities of v and ViM) andly; (betweenVi’V'_l andV{"). We denote
the drift factorV'(x), has no bearing on the conclusions of the distributions ofv™ and ViM by p(V™) and p(V™), re-
the present work. The stationary average curj€n} is pro-  gspectively. The distribution functiop(A) for the barrier
portional toy(7,D) [4-6]. _ heightsA;=VM—V™ is uniquely determined by the knowl-
(i) Disorder from impurities Let us assume that the peri- edge of p(V™ and p(VM). The averagegl,) of I,; and
odic ratchet potential/{"=0 andl,+1,=L is perturbed by (1,) of 1, are related to(A) by (I1)=(A>/A1' and
adding impurities at random. An impurity is modeled here as<|2>:<A>/A2; correspondingly, the average ratchet tooth
a unit cell with the same length but reversed asymmetry gjse is(LY=(l,)+(l,). Notice that all ratchet teeth are char-

A;—A, (and reversed rectifying factorimpurities (or — acterized by the very same rectifying factp{r,D) of Eq.
cells) can replace the ratchet tedir + cells) in two topo- )

logically different ways, as illustrated in Figs(t) and Xc) For 5-correlated noises, Eq2) with 7=0, the diffusion
[18]. process in the random potentM{x) above(no drift herg is

We focus here oi(x) configurations where the: cells  \yell described by the mean first-passage tif@) for a
are ordered to form random spatial sequences distributed agyqwnian particle to diffuse, say, from O up t9 namely
cording to Poissonian distributiof4d9] with characteristic [19],

lengthsv L andv_L, respectively, and..>1. The station-

ary average current(r) (in the absence of periodicity the 1 (xdy (v

average is taken over the entire ratchet lepgtn be easily T(x)= BJ' —f p(z)dz, (8
calculated by adding the contribution from eathcell, that oP(Y) )=

is [19],

wherep(x) = Nexg —V(x)/D] and\ is a suitable normaliza-
vi—v_ tion constant. On assuming for simplicity thet N(L) with
, (6)  N>1, we recast Eq(8) as

H(D=o(7) =
where jo(7)=Luo(D)y(7,D) is the current in the unper- NZ(L)2 (e¥"/Py(e~V"D)
turbed ratchet potentidgmade of+ cells). T(N)= 2D (AID)?

In homogeneous random potentials with=1v, , thelo-
cal probability currentj (x; 7) is spatially correlated, even if where ( ) denotes the averages with respect gv™),
its mean in Eq(6) vanishes. Suppose that a Brownian par-,(\/M) or p(A) as appropriate.
ticle is injected in the unit cell located E&, then the current In the presence of correlated noisEO, the ratchet aver-

(X0, 7) would be either positive or negative depending onage currentj(7) can be expressed in terms of the factor
the distribution of the+ cells in the neighborhood ofy. As y(7,D) [4—6] as

a consequence, the particle would travel a certain distance

Ax from xq, the current changing randomly with the position j(7)=(LYy(7,D)/T(1), (10)
of the particle. On average, the current decays

exponentially with Ax [19], that is, j(Xo+AX;7)  whence our prediction

=j(Xo;7)exp(—|AX/\), where A=v.L/2 with A>L. This

means that the injected particle would drift in either direction 2D y(7,D) (AID)?

according to the logarithmic laf20] j(r)= w0 <eVM/D><e—Vm/D><1 e‘A’D>2'

(Ax(t))~NIn[ o y(7,D)t]. @) (11)

<1_e—A/D>2, (9)

For the sequence aof cells of Fig. 1b) with v, =v_ the In the following we will discuss this important result in some
+,— interfaces are natural accumulation points, whereas th@etail. Here we note that for noise intensities larger than the
—,+ interfaces are rather depletion points. The questiorstandard deviatiom, of V{", D>oy, the current(11) ap-
then arises under what circumstances a— interface acts proaches B y(7,D)/{L), no matter what the distributions of
as a stable accumulatiofr localization point. On both  V{" andA;.

sides of the stablet,— interface, the total probability per We apply now our predictiorgll) for j(7) to a few ex-
unit cell decreases by a facte¥!”®) on moving away from amples of the random potentig(x).
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interchangingA; and A,, i.e., by transformingV(x) into
—V(—x) as shown in Fig. @). As a consequence, the result
of Eq. (12) remains unchangel®1]. As a major difference,
however, the potentials itb) always support stationary dif-
fusion, whereas the potentials {it) do not: they are not
b bounded from below and fdd <o, the Brownian particle
diffuses to infinity.
(d) Gaussian distributed maxima and mininit V" and
VM be distributed according to the same Gaussian law
p(V)=(27a2)~ Y2exp(—V?242). This implies thap(A) is
FIG. 2. Random ratchet potential&(x): (a) exponentially dis- @ Gaussian function too, with=0 and variance &3 .
tributed minima with V"=0 and (b) exponentially distributed Simple algebraic manipulations yield the approximate ex-

minima with V{"<0 (see the tejt pression
(a) Periodic with \"'=0 and A;=VM. This is the stan- ()= 2D V(T,D)e,(,\zl,Dz 13
dard ratchet modg¢K—6] discussed in itenfi) (with v_=0). n= (L)
Equation(11) leads immediately to the currepg(7) of Eq.
(6). for D<oy . At variance with exampleg&) and(c) the cur-

(b) Exponentially distributed minima withR=0. Thisis  rentj(7) is definite positive folD < o too, although expo-
the case illustrated in Fig(8). The relevant distributions for nentially suppressed. We conclude itéim by noticing that
V" and A; are p(V"=(lloy)exp(-VToy) and nonmarginal ratchet currents in random potentials can be
p(A)=(Loy)exp(~Alay), respectively. These are multi- observed only for finite band roughne$ise Gaussian distri-

stable potentials with degenerate miniM3=0. An explicit ~ bution being just a borderline case o
calculation proves that(eVM’D><e‘Vm’D> converges to Quenched noise helps make ratchet models more realistic.

: . For instance, the directed movement of polymerésed
21(N2_ 2 -
.D /I(D oy) for oy<D and diverges otherwise. Accord other DNA or RNA binding proteinsalong the nucleotide
ingly, backbone is certainly controlled by randomness (paasir-
2Dy(7,D) ol andom sequences, folding, ¢tf9]. According to Eq.(12),
j(r)= T _(3\/) (120  disorder would become detectable atheesholdin the rel-
for oy<D andj(7)=0 for o,>D. This leads us to con-

evant ratchet currerj(T)~T—Ty, or j(7)~7— 7, . More-
over, we know that the extension of the above predictions to
clude that forD <o, the roughness d¥(x) cannot be over-
come, no matter what the noise correlation time; again, dis

the transport ofarrays of directed lined13] on disordered
substrates requires minor conceptual maodificati8is Re-

order quenches the rectifying power of the ratchet.

Equivalently, on keeping the noise variana@ in Eq. (2)

markable applications to dislocatidd6] and flux line dy-
namics[15] follow immediately. A detailed investigation of
fixed and tuningr as a control parameter, a threshejg can quinched d'sdofder ;mzl)—d{mensmnal ratchets is planned
be introduced, so thaf(7)~7—7, for r—r,+ and to be reported In a forthcoming paper.
j(7)=0 for r<7y,. This work was supported in part by the Istituto Nazionale
(c) Exponentially distributed minima with{\<0. This  di Fisica Nucleare, VIRGO Project. The author wishes to
class of potential can be obtained from the potentials of exthank D. K. Campbell and A. V. Granato for their kind hos-
ample(b) by turning the relevant potential upside down andpitality at the Loomis Laboratory of Physics in Urbana.
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