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Transport properties in disordered ratchet potentials
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The role of disorder in one-dimensional ratchet potentials is investigated by introducing the following:~i!
impurities, where a certain fraction of the asymmetric unit cells are replaced by unit cells with opposite
asymmetry, and~ii ! randomness, where all unit cells have the same asymmetry, but random size. The relevant
color-induced currents are determined and compared with the current of the ideal periodic ratchet potential.
Altogether disorder is shown to quench the effectiveness of thermal ratchets, while remarkable transport
properties become detectable.@S1063-651X~97!09708-0#
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Thermal ratchets are remarkable devices capable of r
fying a zero-mean noisy signal@1–9#. The simplest example
of a thermal ratchet is described by the stochastic proce

ẋ52V8~x!1j~ t !, ~1!

wherej(t) denotes a Gaussian, zero-mean, stationary n
andV(x) is a periodic potential with unit-cell lengthL, that
is, V(x1L)5V(x). A stationary nonzero average probabili
current j (t)[(1/L)*0

L j (x;t)dx may result from the com-
bined action of the spatial asymmetry of the drift
V(x)ÞV(2x) and the noisefinite correlationwith time t.
The process~1! represents a nonequilibrium dynamics,
that no violation of the second law of thermodynamics
implied @10#. Ratchets have been proposed to rectifyperiodic
signals too~rocked ratchets@11#!.

The purpose of the present paper is to investigate the
of disorder in the transport properties of a thermal ratch
Two instances of disorder are discussed in some detail~i!
impurities, for which a certain fraction of the asymmetr
unit cells ~or teeth! of the potentialV(x) are replaced a
random by unit cells with opposite asymmetry~Fig. 1!, and
~ii ! randomness, for which the potential teeth all have th
same asymmetry, but their size is randomly distributed
variety of disordered ratchets may be construed by com
ing disorder of types~i! and ~ii !. We conclude that disorde
quenches the rectifying power of both thermal and rock
ratchets; most notably, a number of ratchet-related trans
properties become detectable in the presence of disorder
results allow us to extend the notion of thermal ratchet to
model of transport in polymers@12# and biological macro-
molecules@3,9#, on random surfaces~interfaces! @13#, in ar-
rays of Josephson junctions@14#, of vortex lines in two-
dimensional superconductors@15#, and of point defects and
dislocations in polycrystalline media@16#, to quote but a few
examples.

Let us specialize the ratchet model~1! by choosing the
autocorrelation function

^j~ t !j~0!&5s2exp~2utu/t!, ~2!

with s25D/t for the noise sourcej(t) and the shape
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V~x!5H Vi
m1A1~x2xi !, 0<x2xi< l 1,i

Vi 11
m 2A2~x2xi 11!, 2 l 2,i<x2xi 11<0

~3!

for the i th ratchet tooth~see the inset of Fig. 1!. The two
adjacent potential minimaVi

m5V(xi) and Vi 11
m 5V(xi 11)

are separated by a distancexi 112xi5 l 1,i1 l 2,i and a poten-
tial maximum Vi

M5Vi
m1A1l 1,i5Vi 11

m 1A2l 2,i . The overall
potential functionV(x) is fully determined when the se
quence of the minimaVi

m or, equivalently, the sequence o
the lengthsl 1,i andl 2,i for a given choice ofV0

m – is assigned.
The idealperiodic ratchet potential@4–6# corresponds to set
ting Vi

m50 for i 50,61,62, . . . , sothat l 1,i5 l 1 and l 2,i5 l 2

with l 11 l 25L andVi
M5VM with VM5A1l 15A2l 2.

The directionality of the ratchets in Fig. 1 is determin
by the choice ofA1 andA2; hereA1 andA2 are independen
of the tooth indexi andA2.A1. Thus we define the dimen
sionlessrectifying factor

g~t,D !52
m1~t,D !2m2~t,D !

m1~t,D !1m2~t,D !
, ~4!

FIG. 1. Ratchet potentialsV(x): ~a! periodic, made of1 cells
~i.e., A2.A1); ~b! and ~c! with impurities represented by2 cells.
Impurities in~b! and~c! are topologically different. The potential in
~c! can be obtained from the one in~b! through the discrete trans
formationV(x)→2V(2x). A 1,2 interface divides a1 cell se-
quence on the right-hand side from a2 cell sequence on the left
hand side~vice versa for a2,1 interface!. ~d! Periodic pattern of
6 cells. The extended unit cell is made here of two1 and two2
cells. Inset: the ratchet tooth of Eq.~3!.
2492 © 1997 The American Physical Society
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56 2493TRANSPORT PROPERTIES IN DISORDERED RATCHET . . .
wherem6 are the escape rates for any transitionxi→xi 61,
respectively. For the piecewise linear potentials of Eq.~3!,
the factorg(t,D) is independent of the size of the ratch
teeth; the relevant escape ratesm6(t,D) have been calcu
lated in the strong color limit of Ref.@17#, whence
m6(0,D)[m0(D) and forA22A1!s

g~t,D !.
t

D

A2
32A1

3

A21A1
. ~5!

Notice that in the weak color limit of Refs.@4–6#, the recti-
fying factor g(t,D) would be proportional tot2. The linear
t dependence in Eq.~5!, an artifact of the discontinuities o
the drift factorV8(x), has no bearing on the conclusions
the present work. The stationary average currentj (t) is pro-
portional tog(t,D) @4–6#.

(i) Disorder from impurities. Let us assume that the per
odic ratchet potentialVi

m50 and l 11 l 25L is perturbed by
adding impurities at random. An impurity is modeled here
a unit cell with the same lengthL but reversed asymmetr
A1↔A2 ~and reversed rectifying factor!. Impurities ~or 2
cells! can replace the ratchet teeth~or 1 cells! in two topo-
logically different ways, as illustrated in Figs. 1~b! and 1~c!
@18#.

We focus here onV(x) configurations where the6 cells
are ordered to form random spatial sequences distributed
cording to Poissonian distributions@19# with characteristic
lengthsn1L andn2L, respectively, andn6@1. The station-
ary average currentj (t) ~in the absence of periodicity th
average is taken over the entire ratchet length! can be easily
calculated by adding the contribution from each6 cell, that
is @19#,

j ~t!5 j 0~t!
n12n2

n11n2
, ~6!

where j 0(t)5Lm0(D)g(t,D) is the current in the unper
turbed ratchet potential~made of1 cells!.

In homogeneous random potentials withn25n1 , the lo-
cal probability currentj (x;t) is spatially correlated, even i
its mean in Eq.~6! vanishes. Suppose that a Brownian p
ticle is injected in the unit cell located atx0; then the current
j (x0 ,t) would be either positive or negative depending
the distribution of the6 cells in the neighborhood ofx0. As
a consequence, the particle would travel a certain dista
Dx from x0, the current changing randomly with the positio
of the particle. On average, the current deca
exponentially with Dx @19#, that is, j (x01Dx;t)
5 j (x0 ;t)exp(2uDxu/l), where l5n6L/2 with l@L. This
means that the injected particle would drift in either directi
according to the logarithmic law@20#

^Dx~ t !&;l ln@m0g~t,D !t#. ~7!

For the sequence of6 cells of Fig. 1~b! with n15n2 the
1,2 interfaces are natural accumulation points, whereas
2,1 interfaces are rather depletion points. The quest
then arises under what circumstances a1,2 interface acts
as a stable accumulation~or localization! point. On both
sides of the stable1,2 interface, the total probability pe
unit cell decreases by a factoreg(t,D) on moving away from
s

c-

-
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s

e
n

the interface itself. This is required to compensate for
difference m1(t,D)2m2(t,D) and guarantee thatj (x;t)
vanishes at the interface. Stability of the accumulation po
1,2 is thus achieved when the accumulation leng
l l5L/g(t,D) is much shorter than the distancel between
the 1,2 interface and the closer2,1 interface, i.e., for
l @l l , (1/l)exp@2(l2ll)/l# @19#.

(ii) Disorder from randomness. We assume now that th
potentialV(x) is made of individual ratchet teeth~3! with
constant, positive asymmetryA2.A1, but irregular size. This
means that the potential minimaVi

m and maximaVi
M are

distributed at random and so are the distancesl 1,i ~between
Vi

m andVi
M) and l 2,i 21 ~betweenVi 21

M andVi
m). We denote

the distributions ofVi
m and Vi

M by r(Vm) and r(VM), re-
spectively. The distribution functionr(D) for the barrier
heightsD i5Vi

M2Vi
m is uniquely determined by the knowl

edge ofr(Vm) and r(VM). The averageŝ l 1& of l 1,i and
^ l 2& of l 2,i are related to ^D& by ^ l 1&5^D&/A1 and
^ l 2&5^D&/A2; correspondingly, the average ratchet too
size is^L&5^ l 1&1^ l 2&. Notice that all ratchet teeth are cha
acterized by the very same rectifying factorg(t,D) of Eq.
~5!.

For d-correlated noises, Eq.~2! with t50, the diffusion
process in the random potentialV(x) above~no drift here! is
well described by the mean first-passage timeT(x) for a
Brownian particle to diffuse, say, from 0 up tox, namely
@19#,

T~x!5
1

DE
0

x dy

p~y!
E

2`

y

p~z!dz, ~8!

wherep(x)5Nexp@2V(x)/D# andN is a suitable normaliza-
tion constant. On assuming for simplicity thatx5N^L& with
N@1, we recast Eq.~8! as

T~N!.
N2^L&2

2D

^eVM /D&^e2Vm/D&

^D/D&2 ^12e2D/D&2, ~9!

where ^ & denotes the averages with respect tor(Vm),
r(VM), or r(D) as appropriate.

In the presence of correlated noiset.0, the ratchet aver-
age currentj (t) can be expressed in terms of the fact
g(t,D) @4–6# as

j ~t!5^L&g~t,D !/T~1!, ~10!

whence our prediction

j ~t!5
2Dg~t,D !

^L&

^D/D&2

^eVM /D&^e2Vm/D&^12e2D/D&2
.

~11!

In the following we will discuss this important result in som
detail. Here we note that for noise intensities larger than
standard deviationsV of Vi

m , D@sV , the current~11! ap-
proaches 2Dg(t,D)/^L&, no matter what the distributions o
Vi

m andD i .
We apply now our prediction~11! for j (t) to a few ex-

amples of the random potentialV(x).
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(a) Periodic with Vi
m50 and D i5VM. This is the stan-

dard ratchet model@4–6# discussed in item~i! ~with n250).
Equation~11! leads immediately to the currentj 0(t) of Eq.
~6!.

(b) Exponentially distributed minima with Vi
m>0. This is

the case illustrated in Fig. 2~a!. The relevant distributions fo
Vi

m and D i are r(Vm)5(1/sV)exp(2Vm/sV) and
r(D)5(1/sV)exp(2D/sV), respectively. These are mult
stable potentials with degenerate minimaVi

m50. An explicit

calculation proves that^eVM /D&^e2Vm/D& converges to
D2/(D22sV

2) for sV,D and diverges otherwise. Accord
ingly,

j ~t!5
2Dg~t,D !

^L& F12S sV

D D 4G ~12!

for sV,D and j (t)50 for sV.D. This leads us to con
clude that forD,sV the roughness ofV(x) cannot be over-
come, no matter what the noise correlation time; again,
order quenches the rectifying power of the ratch
Equivalently, on keeping the noise variances2 in Eq. ~2!
fixed and tuningt as a control parameter, a thresholdt th can
be introduced, so thatj (t);t2t th for t→t th1 and
j (t)50 for t<t th .

(c) Exponentially distributed minima with Vi
m<0. This

class of potential can be obtained from the potentials of
ample~b! by turning the relevant potential upside down a

FIG. 2. Random ratchet potentialsV(x): ~a! exponentially dis-
tributed minima with Vi

m>0 and ~b! exponentially distributed
minima with Vi

m<0 ~see the text!.
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interchangingA1 and A2, i.e., by transformingV(x) into
2V(2x) as shown in Fig. 2~b!. As a consequence, the resu
of Eq. ~12! remains unchanged@21#. As a major difference,
however, the potentials in~b! always support stationary dif
fusion, whereas the potentials in~c! do not: they are not
bounded from below and forD,sV the Brownian particle
diffuses to infinity.

(d) Gaussian distributed maxima and minima. Let Vi
m and

Vi
M be distributed according to the same Gaussian

r(V)5(2psV
2)21/2exp(2V2/2sV

2). This implies thatr(D) is
a Gaussian function too, withD>0 and variance 2sV

2 .
Simple algebraic manipulations yield the approximate
pression

j ~t!5
2Dg~t,D !

^L&
e2sV

2 /D2
~13!

for D!sV . At variance with examples~b! and ~c! the cur-
rent j (t) is definite positive forD<sV too, although expo-
nentially suppressed. We conclude item~ii ! by noticing that
nonmarginal ratchet currents in random potentials can
observed only for finite band roughness~the Gaussian distri-
bution being just a borderline case!.

Quenched noise helps make ratchet models more reali
For instance, the directed movement of polymerase~and
other DNA or RNA binding proteins! along the nucleotide
backbone is certainly controlled by randomness too~quasir-
andom sequences, folding, etc.! @9#. According to Eq.~12!,
disorder would become detectable as athresholdin the rel-
evant ratchet currentj (T);T2Tth or j (t);t2t th . More-
over, we know that the extension of the above predictions
the transport of~arrays of! directed lines@13# on disordered
substrates requires minor conceptual modifications@8#. Re-
markable applications to dislocation@16# and flux line dy-
namics@15# follow immediately. A detailed investigation o
quenched disorder in~111!-dimensional ratchets is planne
to be reported in a forthcoming paper.
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